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Abstract. Reflection of a seismic wave from a plane interface between two elastic media
does not depend on the frequency. If one of the media is poroelastic and fluid-saturated,
then the reflection becomes frequency-dependent. This paper presents a low-frequency
asymptotic formula for the reflection of seismic plane p-wave from a fluid-saturated
porous medium. The obtained asymptotic scaling of the frequency-dependent component
of the reflection coefficient shows that it is asymptotically proportional to the square root
of the product of the reservoir fluid mobility and the frequency of the signal. The depen-
dence of this scaling on the dynamic Darcy’s law relaxation time is investigated as well.
Derivation of the main equations of the theory of poroelasticity from the dynamic filtra-
tion theory reveals that this relaxation time is proportional to Biot’s tortuosity parameter.
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1. Introduction

When a seismic wave interacts with a boundary between elastic and
fluid-saturated media, some energy of the wave is reflected and the rest
is transmitted or dissipated. It is well known that both the transmis-
sion and reflection coefficients from a fluid-saturated porous medium are
functions of frequency (Geertsma and Smit, 1961; Dutta and Ode, 1983;
Santos et al., 1992; Denneman et al., 2002). Recently, low-frequency sig-
nals were successfully used in obtaining high-resolution images of oil and
gas reservoirs (Goloshubin and Bakulin, 1998; Goloshubin and Korneev,
2000; Castagna et al., 2003) and in monitoring underground gas stor-
age (Korneev et al., 2004). Therefore, understanding the behavior of the
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reflection coefficient at the low-frequency end of the seismic spectrum is of
special importance.

The main objective of this paper is to obtain an asymptotic repre-
sentation of the reflection of seismic signal from a fluid-saturated porous
medium in the low-frequency domain. More specifically, we derive a sim-
ple formula, where the frequency-dependent component of the reflection
coefficient is proportional to the square root of the product of frequency
of the signal and the mobility of the fluid in the reservoir. This scaling
can be different depending on the magnitude of the tortuosity factor. Since
the latter is proportional to dynamic Darcy’s law relaxation time, it can be
evaluated from a flow experiment or using microscopic-scale flow model-
ing (Patzek, 2001).

We derive wave propagation equations from the basic principles of the
theory of filtration. This is done, in particular, to verify that both the fil-
tration and poroelasticity theories are based on a common foundation. We
retain the equations needed in the asymptotic analysis that follows, skip-
ping details where the calculations are similar to those in the classical
works by Biot (1956a,b, 1962).

Fluid flow in an elastic porous medium is the subject of both fil-
tration theory (Muskat, 1937; Polubarinova-Kochina, 1962; Bear, 1972;
Barenblatt et al., 1990) and the theory of poroelasticity (Frenkel, 1944;
Gassmann, 1951; Biot, 1956a,b, 1962; Wang, 2000). The filtration theory
usually assumes steady-state or transient processes where the macroscopic
transition times are significantly longer than the transition times of the
local microscopic processes. The poroelasticity theory includes a model of
acoustic wave propagation in fluid-saturated elastic media, where the mac-
roscopic transition times are short and, therefore, the concept of steady-
state fluid flow may be inapplicable.

To obtain a system of equations characterizing fluid–solid interac-
tions in a macroscopically homogeneous elastic fluid-saturated porous
medium, we adopt relaxation filtration (Alishaev and Mirzadzhanzadeh,
1975; Molokovich et al., 1980; Molokovich, 1987), which employs a relax-
ation time to account for the inertial and nonequilibrium effects in fluid
flow, thus extending the classical Darcy’s law (Darcy, 1856; Hubbert, 1940,
1956). Originally, Darcy’s law was formulated for steady-state flow (Darcy,
1856). It is recognized that non-equilibrium effects are important in two-
phase flow (Barenblatt, 1971; Barenblatt and Vinnichenko, 1980), (see
also Silin and Patzek, 2004). However, due to local heterogeneities, they are
also important in single-phase flow.

Further, it is demonstrated in Sections 2 and 3 that under different
assumptions, the equations obtained here can be transformed either into
Biot’s wave equations (Biot, 1956a,b, 1962), or into the elastic pressure
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diffusion equation (Muskat, 1937; Matthews and Russell, 1967; Barenblatt
et al., 1990).

In the original Biot’s works (1956a,b, 1962), the wave equations of poro-
elasticity were derived from the Hamiltonian least-action principle. In order
to close the system, an introduction of a parameter having dimension of
density was needed. This parameter is related to a dimensionless tortuosity
factor characterizing the complexity of the pore space geometry in natural
rocks. There are several definitions of tortuosity in the literature, (see, e.g.,
Bear, 1972). In Biot’s derivation, the tortuosity factor statistically charac-
terizes the heterogeneity of the local fluid velocity field (Biot, 1962). The
way this tortuosity factor and the above-mentioned relaxation time enter
the equations leads to the conclusion that they are linearly related to each
other. The magnitude of the relaxation time and, hence, the value of the
tortuosity, affects the way the reflection coefficient depends on frequency.
Since the magnitude of the tortuosity in Biot’s equations ranges, in general,
between one and infinity (Molotkov, 1999), it is very important to know
the tortuosity factors for different types of rock.

Over the last fifty years, a significant effort has been spent on the investi-
gations of attenuation of Biot’s waves, (see e.g., Pride and Berryman, 2003a,b
and the references therein). It has been noticed that there must be a relation
between the dependence of the attenuation on the wave frequency and the
permeability of the reservoir (Pride et al., 2003). In many cases, the attenua-
tion coefficient can be obtained in an explicit, but quite cumbersome, form.
Computation of the reflection coefficient is even more complex because it
additionally requires inversion of a matrix. However, for a robust reservoir
imaging procedure, a simple asymptotic expression is needed.

Low-frequency limit of Biot’s theory was studied using homogenization
technique (Auriault and Royer, 2002). In that work, the authors conclude
that for a variety of media saturated with slightly compressible fluids, the
distinction between Biot’s (1956a) and Gassman’s (1951) theories dimin-
ishes as the frequency tends to zero.

In this study, we obtain a simple asymptotic expression where the role
of the reservoir fluid mobility is transparent. We focus on the simplest case
of normal reflection of a p-wave.

In addition, we assume that rock grains are practically incompressible,
so that all deformations of the rock and the pore space are due to the rear-
rangements of the grains. The scaling relationship obtained in Section 6
below has been successfully applied for imaging of oil reservoir productiv-
ity (Korneev et al., 2004).

The layout of the paper is as follows. In Section 2, the main equa-
tions of the model are derived from the principles of filtration theory. In
Section 3, the obtained relationships are compared with Biot’s equations
and the pressure diffusion model. In Section 4, we define a dimensionless
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small parameter for the asymptotic analysis of the known harmonic-wave
solution to the equations of poroelasticity. In Section 5, the boundary con-
ditions for the reflection problem are formulated. An asymptotic expression
for the reflection coefficient with respect to the small parameters introduced
in Section 4 is obtained in Section 6. In Section 7, we elaborate on how the
relaxation time and tortuosity affect the asymptotic analysis.

2. Fluid-Solid Skeleton Interaction Equations

Consider a homogeneous porous medium M saturated with a viscous fluid.
The grains of the solid skeleton are displaced by an elastic wave. It is
assumed that a plane p-wave is propagating along the x-axis of a fixed
Cartesian coordinate system. Thus, after averaging over a plane orthogonal
to x, the only nonzero component of the displacement is the x-component,
and the mean displacement is one-dimensional. Due to the skeleton defor-
mation, the grains are rearranged. We assume that the rearrangement
occurs through elastic deformations of the cement bonds between the
grains. Such an assumption is natural in many situations considered in
hydrology and is quite common in the geophysical literature as well, (see,
e.g., Denneman et al., 2002).

In general, deformations result in energy dissipation. In this paper, for
simplicity, it is assumed that these energy losses are much smaller than the
losses through viscous friction in flow of the reservoir fluid. Further, we
assume that the rock is ‘clean’, so that the total mass and volume of the
bonds are small relative to those of the grains. Thus, for the bulk density
of the “dry” skeleton � we have

�= (1−φ)�g, (1)

where �g is the density of the grains and φ is the porosity. If we neglect the
microscopic rotational motions of the grains, the mean density of momen-
tum of the drained skeleton is given by

�
∂u

∂t
= (1−φ)�g

∂u

∂t
, (2)

where u is the mean displacement of the skeleton grains in the x-direction
and t denotes time.

The skeleton deformations change the stress field. We consider only
small variations of parameters near a reference configuration, where all
forces are at equilibrium. It is natural to assume that the shear stresses are
uniformly distributed over directions orthogonal to x. In general, even uni-
formly distributed shear stress influences the rearrangement of the skeleton.
However, the assumption of stiff grains and small-volume bonds allows us
to neglect this influence. The x-component, σx , of the stress implied by a
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displacement of the solid skeleton, u, at a constant fluid pressure, that is
similar to effective stress (Terzaghi and Peck, 1948), can be measured by
the elastic forces acting on a unit (bulk) area in a plane orthogonal to x.
Linear elasticity hypothesis suggests that for small displacements, the stress
σx and the displacement u are linearly related:

σx = 1
β

∂u

∂x
. (3)

Here β =1/K is the drained bulk compressibility, or the inverse of the bulk
modulus K. We retain the subscript x in Equation (3) just to emphasize
that here we focus on a one-dimensional case only.

The motion of the reservoir fluid can be characterized by the superficial
or Darcy velocity W measured relative to the skeleton. This means, that if
we imagine a small surface element moving along with the local displace-
ment of the grains, then the volumetric fluid flux through this surface is
equal to the projection of W on the unit normal vector to the surface. The
average velocity vf of the fluid particles relative to the skeleton is related to
the Darcy velocity by equation

φvf =W. (4)

The total fluid pressure-related force acting on the solid skeleton is equal
to −(∂p/∂x) (Polubarinova-Kochina, 1962; Wang, 2000). A small volume
of the medium, δV , contains �δV mass of rock material and φ�fδV mass
of fluid. Here �f is the density of the fluid. Hence, the momentum of mov-
ing fluid per unit bulk volume is

φ�f

(
∂u

∂t
+vf

)
=φ�f

∂u

∂t
+�fW. (5)

Thus, the momentum balance per unit bulk volume is

�b
∂2u

∂t2
+�f

∂W

∂t
= 1

β

∂2u

∂x2
− ∂p

∂x
, (6)

where �b is the bulk density of the fluid-saturated medium

�b = (1−φ)�g +φ�f =�+φ�f . (7)

Now, consider the motion of the fluid. According to Darcy’s law, at steady-
state conditions

W =−�f
κ

η

∂


∂x
, (8)

where κ is the permeability of the medium, η is the viscosity of the fluid
and 
 is the flow potential (Hubbert, 1940, 1956). We consider only small



288 D. B. SILIN ET AL.

perturbations near an equilibrium configuration and the Darcy velocity
W is measured relative to the porous medium. Hence, the differential of
potential 
 is amended with a term characterizing additional pressure drop
due to the accelerated motion of the skeleton

d
= dp

�f
+ ∂2u

∂t2
dx. (9)

Darcy’s law (8) is for steady-state flow. If flow is transient, for example, due
to abrupt changes in the pressure field, Equation (8) may need to be modi-
fied in order to account for the inertial and relaxation effects. To derive the
respective equation, we use an argument similar to that in Barenblatt and
Vinnichenko (1980). As the pressure gradient changes, the local redistribu-
tion of the pressure field does not occur instantaneously because it includes
microscopic fluid flow along and between the pores. Thus, the gradient of
flow potential determines some combination of Darcy velocity and ‘Darcy
acceleration’

�

(
W,τ

∂W

∂t

)
=−�f

κ

η

∂


∂x
. (10)

Clearly, �(W,0)=W . At low-frequency limit, the acceleration component
is small, hence a linearization with respect to the second parameter yields

W + τ
∂W

∂t
=−�f

κ

η

∂


∂x
. (11)

Here τ is a characteristic redistribution time.
Such a modification of Darcy’s law was proposed by Alishaev (1974),

Alishaev and Mirzadzhanzadeh (1975) using different assumptions. In mul-
tiphase flow, similar considerations were used to model nonequilibrium
effects at the front of water–oil displacement and spontaneous imbibi-
tion (Barenblatt, 1971; Barenblatt and Vinnichenko, 1980). Some estimates
of the relaxation time, based on an interpretation of experiments, were
reported in Molokovich et al. (1980), Molokovich (1987), and Dinariev and
Nikolaev (1990). Apparently, the relaxation time is a function of the pore
space geometry, fluid viscosity η, and compressibility βf . Dimensional anal-
ysis then suggests that τ = ηβfF(κ/L2), where L is the characteristic size
of an elementary representative volume of the medium, and F is some
dimensionless function. Time τ is apparently related to the tortuosity fac-
tor (Biot, 1962). This relationship is discussed in more detail below.

Summing up, we arrive at the following equation characterizing the
dynamics of fluid flow

W + τ
∂W

∂t
=−κ

η

∂p

∂x
−�f

κ

η

∂2u

∂t2
. (12)
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The assumption that both skeleton displacement u and Darcy velocity W

are just small perturbations near some equilibrium values is also applied
to the fluid pressure p. Only these small variations have non-zero deriva-
tives. Therefore, we retain only the terms, which are linear with respect to
small perturbations. A system of momentum balance equations accounting
for convective momentum transport in terms of microscopic fluid velocities
is presented in Nikolaevskii (1996). In Equations (6) and (12), Darcy veloc-
ity is used in conjunction with dynamic version of Darcy’s low.

The mass balances for the fluid and the solid skeleton are

∂(�fφ)

∂t
=−

∂

(
�fW +φ�f

∂u

∂t

)

∂x
, (13)

∂�

∂t
=− ∂

∂x

(
�

∂u

∂t

)
. (14)

For the fluid, we apply the isothermal compressibility law (Landau and
Lifschitz, 1959), that is, for small fluid pressure perturbation

d�f

�f
=βf dp. (15)

Hence, Equation (13) can be rewritten as

∂φ

∂t
+φβf

∂p

∂t
=−∂W

∂x
−φ

∂2u

∂x∂t
−W

∂�f

∂x
− 1

�f

∂

∂x
(φ�f )

∂u

∂t
. (16)

Since the parameter variations are small, and only the perturbed compo-
nents have nonzero derivatives, the last two terms in Equation (16) are of
higher order and can be neglected.

With ρ = (1−φ)ρg, Equation (14) takes on the form

−∂φ

∂t
+ (1−φ)

1
�g

∂�g

∂t
=− 1

�g
(1−φ)

∂�g

∂x

∂u

∂t
+ ∂φ

∂x

∂u

∂t
− (1−φ)

∂2u

∂x ∂t
. (17)

The smallness of perturbations implies that the first two terms on the right-
hand side of the last equation can be dropped. Further on, the perturba-
tion of grain density is a linear function of the perturbations of stress and
fluid pressure, that is

1
�g

d�g =βgsdσx +βgf dp, (18)

where βgs and βgf are the respective compressibility coefficients. Thus,
Equation (17) can be written as

∂φ

∂t
= (1−φ)βgf

∂p

∂t
+ (1−φ)

(
1+ βgs

β

)
∂2u

∂x ∂t
. (19)
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A combination of this last result with Equation (16) leads to the following
relationship(

1+ (1−φ)
βgs

β

)
∂2u

∂x ∂t
+ (φβf + (1−φ)βgf )

∂p

∂t
=−∂W

∂x
. (20)

The grain compressibility is much smaller than the compressibility of the
fluid or the skeleton:

βgf �βf and βgs �β. (21)

This means that bulk deformation occurs only through the porosity pertur-
bations. Thus, Equation (20) can be further reduced to

∂2u

∂x∂t
+φβf

∂p

∂t
=−∂W

∂x
. (22)

Equation (22) states that the amount of fluid volume packed into a unit
bulk volume per unit time is equal to minus the divergence of the absolute
fluid velocity. This fluid redistribution occurs due to fluid compression and
porosity variation. Note that Equations (20) and (22) are mathematically
similar. Below, we use the more general mass balance equation (20) unless
it exceedingly complicates the calculations.

To summarize, we have obtained a closed system of three equations (6),
(12), and (20) with three unknown functions of t and x: the skeleton dis-
placement u, the fluid pressure p, and the Darcy velocity W .

3. Relationship to Biot’s Poroelasticity and Pressure Diffusion Equations

In this section, we demonstrate that under the assumptions formulated in
Section 2 Equations (6), (12), and (20) can be reduced to the system of
equations obtained by Biot (1956a, 1962), (see also Dutta and Ode, 1979).
At the same time, neglecting the inertial terms in these equations, leads
to the pressure diffusion equation used in hydrology and petroleum engi-
neering for well test analysis (see Theis, 1935; Jacob, 1940 or the books
Matthews and Russell, 1967; Barenblatt et al., 1990).

To recover Biot’s poroelasticity equations, the assumption of grain
incompressibility, Equations (21), is applied. For small oscillatory deforma-
tions of the skeleton and fluctuations of the fluid flow, a ‘superficial’ dis-
placement w of the fluid relative to the skeleton can be introduced, so that

W = ∂w

∂t
. (23)

Note that inasmuch as w is related by Equation (23) to the Darcy velocity
of the fluid, it is different from the average microscopic fluid displacement.
Substitution of (23) into Equation (22) yields
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∂2u

∂x ∂t
+φβf

∂p

∂t
=− ∂2w

∂t ∂x
. (24)

By integration in t and differentiation in x, we obtain

∂p

∂x
=− 1

φβf

∂2u

∂x2
− 1

φβf

∂2w

∂x2
. (25)

In this derivation, we have used the assumption of the smallness of the
rock–fluid system oscillations near an equilibrium configuration. Otherwise,
due to the integration, Equation (25) should include an unknown function
of x. Substitution of Equation (23) and the result (25) in Equations (6) and
(12) yields:

�b
∂2u

∂t2
+�f

∂2w

∂t2
=
(

1
β

+ 1
φβf

)
∂2u

∂x2
+ 1

φβf

∂2w

∂x2
, (26)

�f
∂2u

∂t2
+ τ

η

κ

∂2w

∂t2
= 1

φβf

∂2u

∂x2
+ 1

φβf

∂2w

∂x2
− η

κ

∂w

∂t
. (27)

Under the assumptions formulated above, Equations (26) and (27) are
equivalent to the Biot system of equations (8.34) (Biot, 1962):

∂2

∂t2
(�bu+�fw)= ∂

∂x

(
A11

∂u

∂x
+M11

∂w

∂x

)
,

∂2

∂t2
(�fu+mw)= ∂

∂x

(
M11

∂u

∂x
+M

∂w

∂x

)
− η

κ

∂w

∂t
.

Comparing the individual terms, we can establish a relationship between
the relaxation time and the tortuosity factor. Namely, the relaxation time
τ is related to the dynamic coupling coefficient m (Biot, 1962) through
the inverse mobility ratio η/κ. The dynamic coupling coefficient is often
expressed through the tortuosity factor T : m=T �f/φ. Hence, for the tor-
tuosity and relaxation time, we obtain the following relationship:

T = τ
ηφ

κ�f
or τ =T

κ�f

ηφ
. (28)

Comparison of the elastic coefficients reveals that under the assumption of
isotropic porous medium and incompressible grains (the Biot–Willis coeffi-
cient α =K/H ≈ 1, and Ku =K +Kf/φ), the Biot coefficients are constant
and equal to

A11 =Ku ≈ 1
β

+ 1
φβf

and M11 =M =KuB ≈ 1
φβf

, (29)

where Ku is the undrained bulk modulus, and B = R/H is Skempton’s
coefficient, 1/H being the poroelastic expansion coefficient, and 1/R the
unconstrained specific storage coefficient.
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For derivation of the pressure diffusion equation, we assume that the
characteristic time tD of the process is large in comparison with the relax-
ation time τ and the displacements of the skeleton are much smaller then
the characteristic length scale of the process L:

tD � τ and u�L. (30)

Under this assumption, the second-order time derivatives of displacement
u and time derivatives of Darcy velocity W in Equations (6) and (12) can
be dropped:

∂p

∂x
= 1

β

∂2u

∂x2
, (31)

W =−κ

η

∂p

∂x
. (32)

By integrating Equation (31) in x and differentiating in t , we obtain

∂2u

∂t∂x
=β

∂p

∂t
. (33)

Formally, the integration with respect to x is defined up to a function of
time, which is constant due to the constant pressure boundary condition at
infinity. This constant is later cancelled by the differentiation with respect
to t . Finally, by a substitution of Equations (32) and (33) into (22), we
obtain

φ

(
β

φ +βf

)
∂p

∂t
= κ

η

∂2p

∂x2
. (34)

This last equation is the pressure diffusion equation routinely used in well
test analysis (Matthews and Russell, 1967; Barenblatt et al., 1990).

4. Plane Compressional Wave: An Asymptotic Solution

In this Section, we obtain the low-frequency asymptotic expressions for
p-waves in fluid-saturated poroelastic media. These results are used in Sec-
tion 6 in asymptotic analysis of the reflection coefficient.

To transform the system of Equations (6), (12), and (20) obtained in
Section 2, we introduce the dimensionless pressure

P =φβfp (35)

and the hydraulic diffusivity
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D = κ

φβfη
. (36)

Dividing Equation 6 by �b and putting

v2
b = 1

β�b
and v2

f = 1
φβf�b

, (37)

we obtain

∂2u

∂t2
+ �f

�f

∂W

∂t
=v2

b
∂2u

∂x2
−v2

f
∂P

∂x
, (38)

λf
∂2u

∂t2
+W + τ

∂W

∂t
=−D

∂P

∂x
, (39)

γ1
∂2u

∂x ∂t
+γ2

∂P

∂t
=−∂W

∂x
, (40)

where

λf =�f
κ

η
(41)

is the ‘kinematic’ mobility of the fluid, and

γ1 =1+ (1−φ)
βgs

β
and γ2 =1+ (1−φ)

βgf

φβf
. (42)

Coefficient λf has the dimension of time. Assumption (21) imply that both
dimensionless coefficients γ1 and γ2 are close to one. The system of Equa-
tions (38)–(40) is similar to Biot’s system; however, it uses fluid pressure
and Darcy velocity, that are more typical of filtration theory. System (38)–
(40) admits a solution, which is the sum of slow and fast waves (Biot,
1956a). Asymptotic analysis of these waves is our next goal.

A plane-wave solution to Equations (38)–(40) has the form

u=Usei(ωt−kx), W =Wf ei(ωt−kx), P =P0ei(ωt−kx). (43)

Substitution of Equation (43) into (38)–(40) and some algebra yield

Wf =−iωγ1Us +ωγ2
P0

k
(44)

or

Wf = iω(−γ1 +γ2ξ)Us =v

(
−γ1

ξ
+γ2

)
P0, (45)

where

v = ω

k
and ξ =− iP0

kUs
(46)
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Denote

τD = D

v2
f

= κ�b

η
, γv = v2

b

v2
f

= φβf

β
and γ� = �f

�b
(47)

The parameters γv and γ� are dimensionless. Taking into account Equa-
tion (41)

λf =γ�τD. (48)

The dimensionless relaxation time θ and dimensionless angular frequency
ε are defined as

θ = τ

τD
and ε = τDω. (49)

Using these definitions, we obtain the following quadratic equation with
respect to ξ :

(
γ2 + iε

(−γ2γ� + θγ2
))

ξ 2 +
+ (−γ1 +γ2γv + iε

[−1+γ1γ� + (γ� − θγ1)+ θγ2γv

])
ξ +

+ (−γ1γv + iεγv(γ� − τγ1)
)=0. (50)

If we assume the permeability κ ∼ 1 Darcy, that is κ ∼ 10−12 m2, the vis-
cosity of the fluid η ∼ 1 cP = 10−3 Pa-s, and the bulk density of the rock
�b ∼103 kg/m3, then τD ∼10−6 and ε �10−3 for frequencies ω not exceed-
ing ∼1 kHz. Since γ1 and γ2 are of the order of unity, ε (more accurately,
iε) is a small parameter in Equation (50). At ε=0, there are two real roots

ξ
(1)

0 = γ1

γ2
and ξ

(2)

0 =−γv. (51)

By virtue of Equations (21) and (42), the absolute value of the first root
ξ 1

0 is close to unity, whereas the absolute value of the second one is equal
to φβf/β, that is usually larger than one. We obtain two real asymptotic
values for the complex velocity v

v
(1)

0 =0 and v
(2)

0 =vf

√
γv + γ1

γ2
. (52)

The first solution corresponds to the slow wave, whereas the second one is
related to the fast wave.

The exact solution to Equation (50) is cumbersome and nontransparent.
Therefore, we obtain an asymptotic solution directly from Equation (50) in
the form

ξ = ξ0 + ξ1iε − ξ2ε
2 . . . (53)
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Using the notations

A0 = γ2, A1 = −γ2γ� + θγ2,

B0 = γ2γv −γ1, B1 = −1+γ�(1+γ1)+ θ(γ2γv −γ1),

C0 = −γ1γv, C1 = γv(γ� − θγ1),

(54)

we obtain

ξ1 =−A1ξ
2
0 +B1ξ0 +C1

2A0ξ0 +B0
. (55)

Thus, the solutions corresponding to the slow and fast waves have, respec-
tively, the following forms

ξ
(1)

1 =γv

1−γ�(γ2γv +γ1)

γ1 +γ2γv

(56)

and

ξ
(2)

1 = 1
γ2

γ1 −γ�(γ2γv +γ1)

γ1 +γ2γv

. (57)

Note, that since both γ1 ≈1 and γ2 ≈1, Equations (56) and (57) can be sim-
plified

ξ
(1)

1 =γv

1−γ�γv −γ�

1+γv

, (58)

ξ
(2)

1 = 1
γ2

γ1 −γ�γv −γ�

1+γv

. (59)

In particular, ξ
(1)

1 and ξ
(2)

1 are independent of the permeability of the for-
mation and the viscosity of the fluid. Note that the relaxation time also
disappears from the first-order approximation of ξ for both the slow and
fast wave. The latter circumstance is discussed in Section 7 below.

We further obtain that

v(1) =±vb

√
iε

γ1 +γ2γv

+· · · (60)

and

v(2) =±vf

√
γv + γ1

γ2
+vfV1iε +· · · , (61)
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where V1 is the first coefficient of the expansion of V in the powers of iε.
The last two equations, in a combination with equation (56), imply that

k(1) =± 1
τDvb

√
γ1 +γ2γv

√−iε +· · · , (62)

k(2) =± 1
τDvf

1√
γv + γ1

γ2

ε +· · · (63)

The imaginary part of k must be negative. Therefore, from (62), we infer
that

k(1) = 1
τDvb

√
γ1 +γ2γv

1− i√
2

√
ε +· · · (64)

and, respectively,

v(1) =vb

√
1

γ1 +γ2γv

1+ i√
2

√
ε +· · · (65)

By virtue of Equations (51) and (45)

Wf =−iω(γ1 −γ2ξ)Us. (66)

Furthermore, using Equations (53), we get for the fast wave

W fast
f =−εωγ2ξ

(2)

1 U fast
s +· · · (67)

The right-hand side of the last equation is first-order small with respect
to ε. In other words, at low-frequencies, the fast wave is almost a coher-
ent oscillation of the skeleton and the fluid. At the same time, for the slow
wave, the Darcy velocity amplitude is comparable with the amplitude of the
time-derivative of the displacement

W slow
f =−iω (γ1 +γ2γv)U slow

s +· · · (68)

5. Reflection: Boundary Conditions

Consider a normal incidence of a compressional elastic wave upon a plane
interface x = 0 separating media M1 and M2 occupying half-spaces x < 0
and x > 0, respectively, see Figure 1. Medium M1 is ideal elastic solid,
whereas medium M2 is poroelastic fluid-saturated medium. The elastic
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Figure 1. One-dimensional propagation of a low-frequency disturbance perpendicu-
lar to the impermeable interface between medium M1 and porous, permeable solid
M2 fully saturated with a liquid.

properties of M1 and solid skeleton of M2 are characterized by the bulk
densities �i and the speeds of sound vi , i = 1,2. We assume that the
permeability of medium M2 is κ and the boundary between the media is
impermeable to fluid flow. To calculate the reflection coefficient, boundary
conditions at the interface between the media, i.e., at x =0, must be formu-
lated.

Under the assumptions of Section 3, and neglecting the heterogeneities
of the materials, we can assume that the displacements of the solid parti-
cles composing the media are parallel to x, and so is the flux of the fluid in
the pore space. There is an important difference between the fluid and solid
motion. The solid particles move more or less coherently near the respec-
tive equilibrium positions, whereas fluid particles move in a much more dis-
persed manner caused by the complexity of the pore space geometry. Only
the mean volumetric flux or Darcy velocity of the moving fluid is parallel
to x. This quantity is the result of averaging the microscopic fluid velocity
field over a representative volume. In the case under consideration, such an
averaging can be performed over a plane x =Const>0.

Denote by u1 and u2 the displacements of the solid particles in media
M1 and M2, respectively.
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First, the continuity of the displacements and microscopic stresses
requires that

u1|x=0 = u2|x=0 , (69)

− 1
β 1

∂u1

∂x

∣∣∣∣
x=0

= − 1
β2

∂u2

∂x

∣∣∣∣
x=0

+ φp|x=0 . (70)

Here we use the fact that the area of the contact between medium M1 and
the fluid saturating medium M2 is a part of the total area proportional to
the porosity of medium M2.

Zero fluid flux through the boundary implies

Wf |x=0 =0. (71)

Boundary conditions (69)–(71) will be used in the next section for investi-
gation of the reflection coefficient.

6. Reflection Coefficient

To calculate the reflection coefficient, we substitute in boundary condi-
tions (69)–(71) the sum of incident and reflected displacements in medium
M1

u1 =U1ei(ωt−k1x) +RU1ei(ωt+k1x) (72)

and the sum of slow and fast waves transmitted into medium M2 expressed
in terms of the fluid pressure and Darcy velocity variations

p = 1
φβf

P s
0 ei(ωt−ksx) + 1

φβf
P f

0 ei(ωt−kf x), (73)

u2 =U s
2ei(ωt−ksx) +U f

2 ei(ωt−kf x). (74)

Utilizing the first Equation (45), we obtain

(1+R)U1 = U s
2 + U f

2 ,

ik1

β1
(1−R)U1 = iks

2

β2
U s

2 + ikf
2

β2
U f

2

+ P f
0 +P s

0

βf

0 = iω(−γ1 +γ2ξ
s)U s

2 + iω(−γ1 +γ2ξ
f )U f

2 .

(75)
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Further, by virtue of Equation (46), we get

−(1+R)U1 + U s
2 + U f

2 = 0,

− k1

β1
(1−R)U1 + ks

2

(
1
β2

+ ξ s

βf

)
U s

2 + kf
2

(
1
β2

+ ξ f

βf

)
U f

2 = 0,

(γ1 −γ2ξ
s)U s

2 + (γ1 −γ2ξ
f )U f

2 = 0.

(76)

We assume zero attenuation in medium M1, therefore k1 > 0 is real and
ωk1 = v1 is the p-wave velocity in this medium. Note that v1 is a charac-
teristic of the medium M1, which does not depend on the frequency.

Dividing through by U1 and putting Z1 =R, Z2 =U s
2/U1, and Z3 =U f

2/U1,
we obtain the following system of equations

−Z1 + Z2 + Z3 = 1,

ωZ1 + v1k
s
2

(
β1

β2
+ ξ s β1

βf

)
Z2 + v1k

f
2

(
β1

β2
+ ξ f β1

βf

)
Z3 = ω,

(γ1 −γ2ξ
s)Z2 + (γ1 −γ2ξ

f )Z3 = 0.

(77)

Hence, using Equations (63) and (62) and notation (49), the system of
equations (77) can be presented in the following asymptotic form

−Z1 + Z2 + Z3 = 1,

√
εZ1 + A22Z2 + A23

√
εZ3 = √

ε,

(A
(1)

32 +A
(2)

32 iε)Z2 + A33iεZ3 = 0.

(78)

The expressions for the coefficients Aij can be obtained from the asymp-
totic formulae (53), (56), (57), (63), and (64):

A22 = v1

vb

√
γ1 +γ2γv γs

1− i√
2

, (79)

A23 = v1

vf

√
γ2

γ1 +γ2γv

γf , (80)

A
(1)

32 =γ1 +γ2γv, (81)

A
(2)

32 =−γ2γv

1−γ�(γ2γv +γ1)

γ1 +γ2γv

, (82)

A33 =−γ�γ1 −γ1 +γ�

γ1 +γ2γv

. (83)

Here we used the notations

γs =β1

(
1
β2

−γv

1
βf

)
and γf =β1

(
1
β2

+ γ1

γ2

1
βf

)
. (84)
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From the last Equation (78)

Z2 =− A33

A
(1)

32

iεZ3 +· · · (85)

This means that at low frequencies (i.e., at ε →0), the slow wave displace-
ment is scaled with the velocity of fast displacement and, therefore, is one
order of magnitude smaller. In other words, the slow part of the signal
practically does not propagate and is mostly responsible for the reflection.

Substitution of (85) into the first two Equations (78) yields

−Z1 +
(

1− A33

A
(1)

32

iε

)
Z3 = 1,

√
εZ1 +

(
A23

√
ε −A22

A33

A
(1)

32

iε

)
Z3 = √

ε.

(86)

Cancelling the
√

ε in the second Equation (86) and dropping terms of the
order higher than

√
ε, we obtain that

Z3 =Z1 +1. (87)

Consequently

Z1 = 1−A23 +A22(A33/A
(1)

32 )i
√

ε

1+A23 −A22(A33/A
(1)

32 )i
√

ε
. (88)

Again, retaining only the terms of the order
√

ε, we finally obtain

Z1 = 1−A23

1+A23
+

√
2
Ã22A33

A
(1)

32

1
(1+A23)2

(1+ i)
√

ε, (89)

where

Ã22 = v1

vb

√
γ1 +γ2γv γs. (90)

Analysis of the expression (80) shows that in practical situations the
coefficient A23 is greater than one. Therefore, the frequency-independent
component of the reflection coefficient is negative. The frequency-depen-
dent component of the reflection has the same sign as Ã33. The latter is
positive if and only if

γ� <
γ1

1+γ1
. (91)

The right-hand side of the last inequality is approximately equal to 0.5.
Hence, roughly speaking, Ã33 is positive when the fluid density is at least
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twice less than the bulk density of the saturated medium. In such a case the
maximum of the absolute value of the reflection coefficient is attained at
ε=0. At the same time, for dense fluids, the first-order term of the asymp-
totic expansion, which is proportional to the square root of ε, may vanish
and the first frequency-dependent term will be linear. In this case, the tor-
tuosity coefficient becomes an important factor.

In the original variables (47), Equation (89) takes on the form

R = 1−A23

1+A23
+

√
2
Ã22A33

A
(1)

32

1
(1+A23)2

(1+ i)

√
κ�b

η
ω. (92)

Note that the last equation relates the reflectivity to the frequency through
the factor of τD =κ�b/η having the dimension of time. It involves a prop-
erty of the rock, the permeability coefficient, a property of the fluid, the
viscosity, and a property of the coupled fluid–rock system, the bulk den-
sity. The frequency scaling proposed here is similar to but not the same as
the scaling introduced in Geertsma and Smit (1961).

7. The Role of Relaxation Time and Tortuosity

The asymptotic calculations presented above show that the dimension-
less parameter θ , related to both relaxation time and tortuosity factor,
disappears from the first-order terms. However, if θ is large, then some
expansions obtained in Sections 4 and 6 must be reviewed. Practically,
the range of frequencies is limited by the specifications of the available
tools. Therefore, it may happen that within the range of frequencies avail-
able for analysis the product θε is not negligibly small, and the passage
to the limit as ε → 0 should be replaced with analysis at some interme-
diate finite values of ε. In such a case, the asymptotic analysis must be
performed differently. In this section, we consider two examples of such
analysis.

First, let us assume that within the range of available frequencies, the
parameter εθ is of the order of one. In the original variables, this condi-
tion is equivalent to

ω∼ 1
τ
. (93)

Regrouping the coefficients in Equation (50) and dividing through by 1 +
iθε, we obtain

(A0 +Aθ
1iε)ξ

2 + (B0 +Bθ
1 iε)ξ +C0 +Cθ

1 iε =0, (94)
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where the coefficients with zero indices are the same as those in Equation
(54), and

Aθ
1 = − γ2γ�

1+ iθε
,

Bθ
1 = −1+γ�(1+γ1)

1+ iθε
,

Cθ
1 = γvγ�

1+ iθε
.

(95)

Hence, the frequency-independent zero-terms of asymptotic expansions of
the solutions ξ are the same as in Equation (51). To calculate the first-
order coefficients, we note that formally the coefficients (95) are equal to
the respective coefficients in Equations (54) evaluated at τ =0 and divided
by 1 + iθε. This fact, in conjunction with the observation that the asymp-
totic expansion of the reflection coefficient (92) does not depend on τ , sig-
nificantly simplifies the calculations. Indeed, for the first-order coefficients
of asymptotic expansion for ξ we can reuse Equations (56) and (57) if we
put there τ = 0 and multiply the right-hand sides by an additional factor
of 1/1+ iθε. Clearly, the calculations for the first-order terms of expan-
sions of v and k can be carried out in a similar manner. The final result
is that the reflection coefficient in the asymptotic expression (92) takes on
the form

R = 1−A23

1+A23
+2

A22A33

A
(1)

32

1
(1+A23)2

√
i − θε

√
κ�b

η
ω. (96)

Thus, if τω = O(1), the relaxation time and tortuosity affect both the
amplitude and the phase shift of the reflected signal.

Now, consider another extreme situation where θ � 1, so that after the
division of Equation (50) by θ all terms with θ in the denominator can be
neglected. We obtain a quadratic equation

iε(A0ξ
2 +B0ξ +C0)=0. (97)

The latter implies that the frequency dependence of ξ (and, therefore, of
the reflection coefficient as well) vanishes. Therefore, at a very large relax-
ation time (or, equivalently, at a very large tortuosity), the inertial term in
Equation (39) makes the dissipation term on the right-hand side unimpor-
tant. Consequently, the fluid-saturated medium acts as an elastic compos-
ite medium and we arrive at a classical frequency-independent elastic wave
reflection.
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8. Conclusions

Equations of elastic wave propagation in fluid-saturated porous media can
be obtained from the basic principles of filtration theory. Under different
assumptions, these equations reduce either to Biot’s poroelasticity model
or to the pressure diffusion equation. Comparison between our derivation
of poroelasticity equations and the original derivation by Biot shows that
the tortuosity factor entering Biot’s equations is proportional to the relaxa-
tion time from the dynamic version of Darcy’s law. This result can be used
to evaluate the tortuosity factor from a macroscopic flow experiment or
microscopic-scale flow modeling (Patzek, 2001).

While, due to the high attenuation, slow poroelastic waves are rarely
observed in practice, they significantly impact reflection–transmission pro-
cesses making these processes frequency-dependent. This frequency depen-
dence, in turn, affects both the amplitude and the phase of the reflected
wave.

The low-frequency asymptotic behavior of the reflection of a plane seis-
mic wave from an interface between an elastic medium and fluid-saturated
porous medium has been investigated. In case of moderate tortuosity, the fre-
quency-dependent component of the reflection coefficient is asymptotically
proportional to the square root of the product of the reservoir fluid mobil-
ity and the frequency. If the tortuosity is extremely large, the possibility of
which was demonstrated in Molotkov (1999), this scaling changes. In such a
case, the frequency-dependent component of the reflection coefficient is more
complicated and includes an additional factor depending on the dimension-
less product of the relaxation time and the frequency of the signal.

The obtained results suggest that the nature of the frequency-depend-
ence of the reflection coefficient is in viscous friction in fluid flow in the
pore space, rather than in the contrast between the elastic properties of the
overburden and reservoir rocks.

The obtained asymptotic reflection signal scaling has been successfully
applied for imaging the productivity of hydrocarbon reservoir (Korneev
et al. 2004).
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